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Several thermodynamic relations for the vacuum state have been derived by 
assuming that it behaves like a relativistic perfect simple fluid. Unlike the usual 
fluids, the vacuum becomes hotter when it undergoes an adiabatic expansion 
(TV -~ = const). A new Lorentz-invariant spectrum for the vacuum is also 
suggested which is compatible with the usual equation of state p = -p  and 
the other thermodynamic constraints. Some cosmological consequences of these 
results have also been discussed. 

Different conceptions about the quantum vacuum are found in the litera- 
ture (Planck, 1911, 1912; Einstein and Stern, 1913; Casimir, 1948; Marshall, 
1963; Boyer, 1969, 1980; Gliner, 1966; Zeldovich, 1968; GrCn, 1986; Wein- 
berg, 1989; Iliopolus et aL,  1975; Meyers, 1987; Blau et al., 1988; Saunders 
and Brown, 1991). The first arose already in the years of the old quantum 
theory (Planck, 1911, 1912). It is closely related to the possible existence of 
a zero-point energy for blackbody radiation. The random background radiation 
corresponding to the zero-point field is the key ingredient of  so-called stochas- 
tic electrodynamics (SED) (Marshall, 1963; Boyer, 1969, 1980). Later, with 
the development of quantum field theories (QFr) ,  a new concept arose, 
namely: the vacuum state is the one which has no quanta in it. Technically, 
this means that the effect of the annihilation operator is zero. Although much 
effort has been made to reconcile both approaches, they are fundamentally 
different on physical grounds. Particularly, in the SED framework, the random 
background is a real field endowed with a well-defined frequency spectrum 
[pT(V) -- V3], while for QFT, the vacuum is filled with virtual pairs of particles 
fully transparent to ordinary particle detectors. 
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More recently, it was remarked that Lorentz invariance of the vacuum 
state requires an energy-momentum tensor (EMT) of the form (Gliner, 1966; 
Zeldovich, 1968) 3 

(T~) = (P)'q~v (1) 

where p is the vacuum energy density and ~q~v is the Minkowski tensor. Thus, 
the EMT of the vacuum describes a particular relativistic perfect simple fluid, 
for which the equation of state is p = -p .  This result was also explicitly 
obtained in the QFT domain through a relativistically invariant regularization 
of the vacuum energy density and the corresponding pressure (Zeldovich, 
1968). On the other hand, since the EMT (1) is divergenceless, the energy 
density p is constant in space-time, leading to a situation characterized in 
the realm of general relativity by the cosmological constant stress. Such a 
property has profound physical consequences for the interface uniting particle 
physics and cosmology. In fact, it is very puzzling that the cosmological 
upper bound of the effective vacuum energy density differs from natural 
theoretical expectations in QFT by more than 100 orders of magnitude (Wein- 
berg, 1989). Note also that performing a change of inertial frame, the energy 
density of a perfect fluid transforms (Weinberg, 1971; Landau and 
Lifschitz, 1975) 

p, _ P + P V21C2 

1 - -  VZ/C 2 (2) 

where v is the relative velocity between the frames. Therefore, it follows 
from the equation of state p = - p  that the energy density of the vacuum is 
a Lorentz-invariant quantity, regardless of the form of its frequency spectrum. 
In other words, all inertial observers are comoving with the vacuum back- 
ground. Clearly, such a statement can be extended for a general space-time 
by just suppressing the word inertial. 

In this paper we are mainly interested in the above macroscopic point 
of view. In principle, if models based on microphysics have failed to illuminate 
the nature of the quantum vacuum, an alternative and secure way is to consider 
a thermodynamic approach, since its conclusions are not dependent upon the 
microscopic details. As we shall see, by regarding the vacuum state of any 
bosonic or fermionic field as an unusual substance described by p = - p ,  
we can easily deduce its overall thermodynamic properties. As in the case 
of blackbody radiation, such properties shed light on the true nature of the 
vacuum, determining, for instance, the general form of its frequency spectrum. 

The thermodynamic states of a relativistic simple fluid are characterized 
by an EMT T '~, a particle current N '~, and an entropy current S ~. For a 

3A pedagogical approach can be found in Gr#n (1986). 
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perfect fluid such quantities are defined by (for completeness we will consider 
the general relativistic framework) 

r ~ = (p + p ) u ~ u  ~ - p g ~  (3) 

N ~ = nu  ~ (4) 

S ~ = ntru  ~' (5) 

where p is the energy density, p is the pressure, n is the number density, and 
~r is the specific entropy (per particle). The variables p, p, u, and cr are 
related to the temperature T by the Gibbs law (Weinberg, 1971; Landau and 
Lifschitz, 1975) 

n T  d~r = d p  P + p d n  (6) 
1"1 

while the basic quantities are constrained by the following relations: 

T'~I~;~ = 0 (7) 

N'~;,~ = 0 (8) 

S'~;~ = 0 (9) 

where the semicolon denotes covariant derivative. Equations (7) and (8) 
express, respectively, the laws of conservation of energy momentum and 
number of particles, whereas (9) is the thermodynamic second law restricted 
to an adiabatic flow ("equation of continuity" for entropy). 

By considering T and n as independent thermodynamic variables, one 
finds from equations (3)-(9) that the temperature obeys the following evolu- 
tion equation (Calv~o and Lima, 1989; Calv~o et  al . ,  1992): 

T n 
(lO) 

where an overdot means the comoving time derivative (for instance, ir -- 
u~r~). 

Now, for the sake of generality, let us consider the "gamma-law" equation 
of state: 

p = (',/ - 1)p (11) 

where the "adiabatic index" ~/is 4/3 for photons (p = -~p) and zero for the 
vacuum fluid (p = -p) .  Usually, in the cosmological context ",/ranges over 
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the interval 4 0 <- ~ ----- 2. With the choice (11), a straightforward integration 
of (10) furnishes 

Tn l - v  = const (12) 

and since n scales with V -  1, where V is the volume of the considered portion 
within the fluid, equation (12) assumes the form 

T l/(~- I)V - ~ "  const (13) 

which is the usual adiabatic law for fluids with conserved net number of 
particles (CalvAo et  al. ,  1992). For photons the above expression reduces to 
T 3 V  = const, a well-known result, while for the vacuum state (',/ = 0) 
we obtain 

T 
- = const (14) 
V 

We have therefore reached the conclusion that the vacuum becomes 
hotter if it undergoes an adiabatic expansion. Such a result must be compared 
with those of the usual theory of fluids, for which ~/ > 1 (p > 0). As a 
matter of fact, the temperature of  an expanding adiabatic ~/-fluid with negative 
pressure (',/ < 1) grows, as one can see from (13). In this connection we 
recall that thermodynamic states with negative pressure are metastable, but 
they are not forbidden by any law of nature. Such states appear naturally in 
some phase transitions, as happens in an overheated van der Waals liquid. 
Systems with negative pressure are also hydrodynamically unstable for bub- 
bles and cavity formation and a spontaneous collapse could also be expected 
(Landau and Lifschitz, 1980). In the case of  the vacuum, it is tempting to 
speculate whether such collapse may be responsible for matter creation "from 
nothing," with the particles being ultimately described as a kind of vac- 
uum condensation. 

It should be emphasized that in the derivation of (13) the conservation 
of the number of particles was explicitly used. However,  there are at least 
two cases (just photons, and the vacuum) for which the meaning of such 
an assumption needs to be clarified. For p = {p we see from (12) that n 
scales with T 3. Of  course, n must be interpreted here as the average number 
density of photons since its chemical potential is zero. As is well known, 
such an interpretation is consistent with the Planck distribution, which 
furnishes n = f ~  [pr (v ) /hv]  dv  = b T  3, where b is a constant (Landau and 
Lifschitz, 1980). 

4The lower and upper limits are determined from causality requirements since the sound velocity 
is v.~ = c l(Op/Op)~l. The case p = p is the Zeldovich stiff matter (Zeldovich, 1962), whereas 
p = -p  corresponds to the vacuum state. 
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In what  follows we assume that similar considerations hold for the 
vacuum state (',/ = 0), for which equation (12) yields 

const 
n - (15) 

T 

Hence,  we see that for the vacuum state, the average density of  particles 
decreases with growing T. In the limit T---) ~,  n goes to zero, being infinite 
in the opposite extreme (T = 0). Note, however,  since the enthalpy is H = 
(p + p)V, the chemical potential is zero. The same happens to the specific 
heats. 

Let us now consider the vacuum spectrum. From the above results we 
can say that the energy spectrum pr(v) must  satisfy two thermodynamic  
constraints: 

fo o p = pr(v) dv = const (16) 

and 

fo ~  const (17) 
n = ~ dv - T 

In order to show how these constraints may  be useful to determine 
the general form of  the spectrum, we assume that it is described by a "Wien- 
type" law 

pT(v) = v~gp(vf~T x) (18) 

where d~ is an arbitrary function o f  its argument and the powers [3 and h will 
be fixed by the constraints (16) and (17). By defining a new variable u = 
v~T • it is straightforward to establish from (16) and (17) that 

lIi~ 
p - TX(t+l~)/~ f (u )  du (19) 

lfo  n = ~ g(u) du (20) 

where f (u )  and g(u) are functions related to +(u). Note that in the case o f  
photons, p ~ T 4 and n ~ T 3, one obtains [3 = - ~  = 3, recovering both 
results, s For the vacuum state, comparing equations (16) and (17) with (19) 

5Three different methods, among them the one considered by Boltzmann (Carnot cycle), can 
be used to deduce that for a "y law the energy density is given by 9 = "qT "~/~'y-'), where r I is 
a -,/-dependent constant (Lima and Santos, 1995). 
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and (20), respectively, we find k = 1 and 13 = - 1. Therefore, instead of the 
result pr(v) = const, v 3 claimed by the proponents of SED, we have found 
that the unique "Wien-type" spectrum for the vacuum state compatible with 
the thermodynamic constraints is given by 

p r (v )  = v-~qb(T) (21) 

where qb is an arbitrary function of its argument. 
It should be noticed that even in the limit T --+ 0, pr(v) scales with v-  

instead of v 3, as usually inferred from the blackbody radiation spectrum 
(Marshall, 1963; Boyer, 1969, 1980; see also Sciama, 1991). The mistake of 
such an inferences lies in the fact that its results are really arguments in favor 
of a zero-point spectrum satisfying the equation of state p = }p. Indeed, 
since the vacuum energy density is not only constant but also Lorentz invari- 
ant, we have shown that the existence of a temperature-dependent spectrum 
for the vacuum state is not forbidden by the relativity principle, as long as 
the vacuum state is described by the equation of state p = - p .  

The above results may also be interesting for early-universe physics, 
mainly for the so-called inflationary models. In fact, the essential feature of 
such models is the appearance of an accelerated expansion of the universe 
driven by the vacuum stress arising, for instance, from a scalar field with a 
global minimum in its effective potential (Linde, 1984) or some types of 
phase transitions (Sato, 1981; Guth, 1982; Linde, 1982). The inflaton field 
driving inflation behaves, under certain conditions, like a perfect fluid with 

p = 

(y - 1)p, where y < 1. However, as far as we know, its thermodynamic 
behavior has been neglected. In this regard, since the formalism is manifestly 
covariant, we can apply equation (13) for a Friedmann-Robertson-Walker 
(FRW) metric (V ~ R 3) we obtain 

3(y- 1) 

r = T,  -~- (22) 

where R is the universal scale function and T,  = T(R,) is the temperature 
of the universe stage specified by R,.  For y = 4/3 one finds T oc R-1 as 
usual for a radiation-dominated phase. Important results are obtained for 
power-law inflation (0 < ~/ < 1, T oc R3o-~)) and exponential inflation 
(~/ = 0, vacuum, T oc R3). It is also interesting that the treatment of the 
vacuum as a fluid interacting with the other matter fields (such as a multifluid 
model) is in line with recent attempts to solve the so-called cosmological 
constant problem (Weinberg, 1989). According to such an approach, the 
cosmological effective vacuum energy density relaxed to the present small 
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value due to the universal expansion (Peebles, 1984; Chen and Wu, 1990; 
Carvalho et al., 1992). 

Concluding, some thermodynamic properties of  the quantum vacuum 
including the general form of its spectrum have been established. Of  course, 
as for blackbody radiation, the specific form of the arbitrary function contained 
in it must be established by statistical considerations. We also argued that 
the unsettled situation arising from the overall existence of the vacuum and 
its consequences in the interface uniting QFT, general relativity, and cosmol- 
ogy may be circumvented by a more comprehensive picture of  the vacuum 
state itself. In this regard, we hope that the thermodynamic approach outlined 
here may be useful to point the way for a more fundamental description of 
the vacuum. 

A more detailed account of  this work, including thermomechanical prop- 
erties and a rigorous derivation of "Wien's law" for the vacuum state, will 
be published elsewhere. 
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